穿越平凡·追求卓越
搜索

【行业】汽车-软件定义汽车,AI芯片黄金赛道(39页)

汽车由分布式架构向域控制/中央集中式架构方向发展。传统分布式硬件架构面临智能汽车时代多维感知需求和海量非结构化数据处理的需求,一般每新增一个应用功能,便新增对应的感知传感器、决策、执行层。随着智能网联汽车时代的到来,以特斯拉为代表的汽车电子电气架构改革先锋率先采用中央集中式架构,即用一个电脑控制整车。全球范围内各大主机厂均已认识到软件定义汽车的大趋势,纷纷升级自身的电子电气架构,虽不同主机厂采用几个电脑控制整车的方案不同,但架构域控制/集中化方向相同。 智能驾驶处理数据量指数级提升,AI 芯片成为智能汽车时代的运算核心。分布式架构一般可实现低级别辅助驾驶,由于需要处理的传感器信息相对较少,采用 MCU 芯片即可满足运算要求。随着高级别智能驾驶的到来,更智能的汽车需要处理更大量的图片、视频等非结构化数据,仅依靠传统 MCU 芯片不能满足运算需求,而 AI 芯片则可以实现算得快、准、巧。我们重点参考地平线的数据,L3 级别自动驾驶产生的数据量是2.3GB/s,对算力要求在 129TOPS 以上;L4 级别自动驾驶数据量达到 8GB/s,对算力要求达到 448TOPS 以上。如果考虑功能安全的冗余备份,算力需求还要翻倍。 CPU,又称中央处理器,擅长逻辑控制和通用类型数据运算,具有不可替代性。CPU有很强的通用性,可处理不同的数据类型,主要负责顺序控制、操作控制、时间控制、数据加工等操作,因此在任何一个电脑或嵌入式的计算中都有 CPU 或其裁剪版本。CPU由控制器(Control),寄存器(Cache、DRAM)和逻辑单元(ALU)构成,其中控制器和寄存器占比较大,而处理数据的逻辑单元占比较小,因此对于专用领域数据处理能力较弱。代表厂商即为 X86 处理器的英特尔和嵌入式处理器的 ARM。