穿越平凡·追求卓越
搜索

【行业】人工智能基础层发展研究报告(60页)

算力、算法、数据是人工智能产业发展的三大要素。据此,人工智能基础层主要包括智能计算集群、智能模型敏捷开发工具、数据基础服务与治理平台三个模块。智能计算集群提供支撑AI模型开发、训练或推理的算力资源,包括系统级AI芯片和异构智能计算服务器,以及下游的人工智能计算中心等;智能模型敏捷开发工具模块主要实现AI应用模型的生产,包括开源算法框架,提供语音、图像等AI技术能力调用的AI开放平台和AI应用模型效率化生产平台;数据基础服务与治理平台模块则实现AI应用所需的数据资源生产与治理,提供AI基础数据服务及面向AI的数据治理平台。AI基础层企业通过提供AI算力、开发工具或数据资源助力人工智能应用在各行业领域、各应用场景落地,支撑人工智能产业健康稳定发展。 开发一项人工智能模型并上线应用大致需经历从业务理解、数据采标及处理、模型训练与测试到运维监控等一系列流程。过程中需要大量的AI算力、高质量数据源、AI应用算法研发及AI技术人员的支持,但大部分中小企业用户并不具备在“算力、数据、算法”三维度从0到1部署的能力,而财力雄厚的大型企业亦需高性价比的AI开发部署方案。依靠AI基础层资源,需求企业可降低资源浪费情况、规避试错成本、提高部署应用速度。作为支撑AI模型开发及落地的必要资源,AI基础层可在多环节提效AI技术价值的释放;其工具属性也标志着AI产业社会化分工的出现,AI产业正逐步进入低技术门槛、低部署成本、各产业深度参与双向共建的效率化生产阶段。 智能化转型趋势下,企业部署AI项目的需求正经历着变化,对数据质量、模型生产周期、模型自学习水平、模型可解释性、云边端多样部署方式、人力成本及资金投入、投资回报率等的要求都逐步走高。在上述需求特点及自动机器学习、AI芯片硬件架构等技术发展的共同推动下,AI基础层资源的整体效能水平也在不断进化,以有效降低需求企业的AI开发成本。大致涵盖相互交融的三个阶段:雏形期,算法/算力/数据各模块多为粗放式的单点工具,新兴产品及赛道逐步出现;快速发展期,各赛道活跃度显著提升,参与者积极探索产品形态与商业模式,基础层服务体系逐步完善、资源价值凸显;最后则向成熟阶段过渡,各赛道内企业竞争加剧,逐步跑出头部企业。同时各赛道间企业生态合作增多,一站式工具平台出现。