【行业】半导体SiC衬底--产业瓶颈亟待突破(25页)
碳化硅属于第三代半导体材料,在低功耗、小型化、高压、高频的应用场景有极大优势。第一代半导体主要有硅和锗,广泛应用于集成电路等低压、低频、低功率场景。但是难以满足高功率及高频器件需求。砷化镓是第二代半导体材料的代表,是制作半导体发光二极管和通信器件的核心材料,但砷化镓材料的禁带宽度较小、击穿电场低且具有毒性,无法在高温、高频、高功率器件领域推广。第三代半导体材料以碳化硅、氮化镓为代表,与前两代半导体材料相比最大的优势是较宽的禁带宽度,保证了其可击穿更高的电场强度,适合制备耐高压、高频的功率器件。
碳化硅材料性能优越,下游应用广泛。碳化硅制作的器件具有耐高温、耐高压、高频、大功率、抗辐射等特点,具有开关速度快、效率高的优势,可大幅降低产品功耗、提高能量转换效率并减小产品体积,下游应用广泛。目前碳化硅半导体主要应用于以 5G 通信、国防军工、航空航天为代表的射频领域和以新能源汽车、“新基建”为代表的电力电子领域,在民用、军用领域均具有明确且可观的市场前景。
碳化硅产业链分为衬底材料制备、外延层生长、器件制造以及下游应用。通常采用物理气相传输法(PVT 法)制备碳化硅单晶,再在衬底上使用化学气相沉积法(CVD 法)等生成外延片,最后制成相关器件。在 SiC 器件的产业链中,由于衬底制造工艺难度大,产业链价值量主要集中于上游衬底环节。


